Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.639
Filtrar
1.
mSphere ; 9(4): e0014024, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38564734

RESUMEN

Histone lysine acetyltransferase MYST-associated NuA4 complex is conserved from yeast to humans and plays key roles in cell cycle regulation, gene transcription, and DNA replication/repair. Here, we identified a Plasmodium falciparum MYST-associated complex, PfNuA4, which contains 11 of the 13 conserved NuA4 subunits. Reciprocal pulldowns using PfEAF2, a shared component between the NuA4 and SWR1 complexes, not only confirmed the PfNuA4 complex but also identified the PfSWR1 complex, a histone remodeling complex, although their identities are low compared to the homologs in yeast or humans. Notably, both H2A.Z/H2B.Z were associated with the PfSWR1 complex, indicating that this complex is involved in the deposition of H2A.Z/H2B.Z, the variant histone pair that is enriched in the activated promoters. Overexpression of PfMYST resulted in earlier expression of genes involved in cell cycle regulation, DNA replication, and merozoite invasion, and upregulation of the genes related to antigenic variation and DNA repair. Consistently, PfMYST overexpression led to high basal phosphorylated PfH2A (γ-PfH2A), the mark of DNA double-strand breaks, and conferred protection against genotoxic agent methyl methanesulfonate (MMS), X-rays, and artemisinin, the first-line antimalarial drug. In contrast, the knockdown of PfMYST caused a delayed parasite recovery upon MMS treatment. MMS induced the gradual disappearance of PfMYST in the cytoplasm and concomitant accumulation of PfMYST in the nucleus, suggesting cytoplasm-nucleus shuttling of PfMYST. Meanwhile, PfMYST colocalized with the γ-PfH2A, indicating PfMYST was recruited to the DNA damage sites. Collectively, PfMYST plays critical roles in cell cycle regulation, gene transcription, and DNA replication/DNA repair in this low-branching parasitic protist.IMPORTANCEUnderstanding gene regulation and DNA repair in malaria parasites is critical for identifying targets for antimalarials. This study found PfNuA4, a PfMYST-associated, histone modifier complex, and PfSWR1, a chromatin remodeling complex in malaria parasite Plasmodium falciparum. These complexes are divergent due to the low identities compared to their homologs from yeast and humans. Furthermore, overexpression of PfMYST resulted in substantial transcriptomic changes, indicating that PfMYST is involved in regulating the cell cycle, antigenic variation, and DNA replication/repair. Consistently, PfMYST was found to protect against DNA damage caused by the genotoxic agent methyl methanesulfonate, X-rays, and artemisinin, the first-line antimalarial drug. Additionally, DNA damage led to the relocation of cytoplasmic PfMYST to the nucleus and colocalization of PfMYST with γ-PfH2A, the mark of DNA damage. In summary, this study demonstrated that the PfMYST complex has critical functions in regulating cell cycle, antigenic variation, and DNA replication/DNA repair in P. falciparum.


Asunto(s)
Reparación del ADN , Plasmodium falciparum , Proteínas Protozoarias , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Replicación del ADN , Histonas/genética , Histonas/metabolismo , Regulación de la Expresión Génica
2.
mSphere ; 9(4): e0000724, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38567972

RESUMEN

Bruno Martorelli Di Genova works in parasitology, focusing on Toxoplasma gondii metabolism. In this mSphere of Influence article, he reflects on how the articles "Metabolic Reprogramming during Purine Stress in the Protozoan Pathogen Leishmania donovani" and "Yeast-Based High-Throughput Screen Identifies Plasmodium falciparum Equilibrative Nucleoside Transporter 1 Inhibitors That Kill Malaria Parasites" impacted him, informing his research strategies and understanding of metabolic flexibility in Toxoplasma gondii.


Asunto(s)
Leishmania donovani , Plasmodium falciparum , Purinas , Toxoplasma , Purinas/metabolismo , Toxoplasma/metabolismo , Leishmania donovani/metabolismo , Leishmania donovani/efectos de los fármacos , Plasmodium falciparum/metabolismo , Plasmodium falciparum/efectos de los fármacos , Humanos
3.
Angew Chem Int Ed Engl ; 63(19): e202319765, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38502093

RESUMEN

The natural product chlorotonil displays high potency against multidrug-resistant Gram-positive bacteria and Plasmodium falciparum. Yet, its scaffold is characterized by low solubility and oral bioavailability, but progress was recently made to enhance these properties. Applying late-stage functionalization, we aimed to further optimize the molecule. Previously unknown reactions including a sulfur-mediated dehalogenation were revealed. Dehalogenil, the product of this reaction, was identified as the most promising compound so far, as this new derivative displayed improved solubility and in vivo efficacy while retaining excellent antimicrobial activity. We confirmed superb activity against multidrug-resistant clinical isolates of Staphylococcus aureus and Enterococcus spp. and mature transmission stages of Plasmodium falciparum. We also demonstrated favorable in vivo toxicity, pharmacokinetics and efficacy in infection models with S. aureus. Taken together, these results identify dehalogenil as an advanced lead molecule.


Asunto(s)
Antibacterianos , Staphylococcus aureus , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Plasmodium falciparum/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Animales , Enterococcus/efectos de los fármacos , Estructura Molecular , Humanos , Ratones
4.
J Nat Prod ; 87(4): 855-860, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38412225

RESUMEN

Two new compounds, kinanthraquinone C (1) and kinanthraquinone D (2), were isolated along with two known compounds, kinanthraquinone (3) and kinanthraquinone B (4), produced by the heterologous expression of the kiq biosynthetic gene cluster and its pathway-specific regulator, kiqA, in Streptomyces lividans TK23. The chemical structures of compounds 1 and 2 were determined using mass spectrometry and nuclear magnetic resonance analyses. To examine a biosynthetic pathway of compounds 1 and 2, incubation experiments were conducted using S. lividans TK23 to supply the compounds 3 and 4. These experiments indicated that compounds 3 and 4 were converted to compounds 2 and 1, respectively, by the endogenous enzymes of S. lividans TK23. Compounds 2, 3, and 4 had antimalarial activities at half-maximal inhibitory concentration values of 0.91, 1.2, and 15 µM, respectively, without cytotoxicity up to 30 µM.


Asunto(s)
Antraquinonas , Antimaláricos , Streptomyces lividans , Antimaláricos/farmacología , Antimaláricos/química , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Estructura Molecular , Antraquinonas/farmacología , Antraquinonas/química , Plasmodium falciparum/efectos de los fármacos , Biotransformación , Familia de Multigenes , Resonancia Magnética Nuclear Biomolecular
5.
J Nat Prod ; 87(4): 849-854, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38416027

RESUMEN

Microthecaline A (1), the known antiplasmodial quinoline serrulatane alkaloid from the roots of Eremophila microtheca F. Muell. ex Benth. (Scrophulariaceae), was targeted for isolation and subsequent use in the generation of a semisynthetic ether library. A large-scale extraction and isolation yielded the previously undescribed quinoline serrulatane microthecaline B (2), along with crystalline 1 that enabled the first X-ray crystallographic analysis to be undertaken on this rare alkaloid structure class. The X-ray diffraction analysis of 1 supported the absolute configuration assignment of microthecaline A, which was originally assigned by ECD data analysis. Microthecaline A (1) was converted into 10 new semisynthetic ether derivatives (3-12) using a diverse series of commercially available alkyl halides. Chemical structures of the new serrulatane alkaloid and semisynthetic ether analogues were assigned by spectroscopic and spectrometric analyses. Antiplasmodial evaluations of 1-12 showed that the semisynthetic derivative 5 elicited the most potent activity with an IC50 value of 7.2 µM against Plasmodium falciparum 3D7 (drug-sensitive) strain.


Asunto(s)
Alcaloides , Antimaláricos , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Alcaloides/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Plasmodium falciparum/efectos de los fármacos , Estructura Molecular , Eremophila (Planta)/química , Cristalografía por Rayos X , Quinolinas/farmacología , Quinolinas/química , Raíces de Plantas/química , Éteres/farmacología , Éteres/química
6.
J Nat Prod ; 87(4): 994-1002, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38421618

RESUMEN

Three new antiplasmodial compounds, named akedanones A (1), B (2), and C (3), were discovered from the cultured material of Streptomyces sp. K20-0187 isolated from a soil sample collected at Takeda, Kofu, Yamanashi prefecture in Japan. The structures of compounds 1-3 were elucidated as new 2,3-dihydronaphthoquinones having prenyl and reverse prenyl groups by mass spectrometry and nuclear magnetic resonance analyses. Compound 1 and the known furanonaphthoquinone I (4) showed potent in vitro antiplasmodial activity against chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains, with half-maximal inhibitory concentration values ranging from 0.06 to 0.3 µM. Compounds 1 and 4 also displayed potent in vivo antiplasmodial activity against drug-sensitive rodent malaria Plasmodium berghei N strain, with inhibition rates of 47.6 and 43.1%, respectively, on intraperitoneal administration at a dose of 5 mg kg-1 day-1 for 4 days.


Asunto(s)
Antimaláricos , Naftoquinonas , Plasmodium berghei , Plasmodium falciparum , Streptomyces , Antimaláricos/farmacología , Antimaláricos/química , Plasmodium falciparum/efectos de los fármacos , Streptomyces/química , Naftoquinonas/farmacología , Naftoquinonas/química , Estructura Molecular , Plasmodium berghei/efectos de los fármacos , Animales , Japón , Ratones , Cloroquina/farmacología , Microbiología del Suelo
7.
Front Cell Infect Microbiol ; 14: 1342856, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38404287

RESUMEN

Introduction: Malaria parasites increasingly develop resistance to all drugs available in the market, hampering the goal of reducing malaria burden. Methods: Herein, we evaluated the impact of a single-nucleotide variant, E738K, present in the 26S proteasome regulatory subunit rpn2 gene, identified in Plasmodium chabaudi resistant parasites. Plasmids carrying a functional rpn2 interspecies chimeric gene with 5' recombination region from P. falciparum and 3' from P. chabaudi were constructed and transfected into Dd2 P. falciparum parasites. Results and discussion: The 738K variant parasite line presented increased parasite survival when subjected to dihydroartemisinin (DHA), as well as increased chymotrypsin-like activity and decreased accumulation of polyubiquitinated proteins. We thus conclude that the ubiquitin-proteasome pathway, including the 738K variant, play an important role in parasite response to DHA, being the first report of a mutation in a potential DHA drug target enhancing parasite survival and contributing to a significant advance in the understanding the biology of artemisinin resistance.


Asunto(s)
Antimaláricos , Artemisininas , Plasmodium falciparum , Antimaláricos/farmacología , Artemisininas/farmacología , Mutación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
8.
J Biol Chem ; 300(1): 105586, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141766

RESUMEN

About 247 million cases of malaria occurred in 2021 with Plasmodium falciparum accounting for the majority of 619,000 deaths. In the absence of a widely available vaccine, chemotherapy remains crucial to prevent, treat, and contain the disease. The efficacy of several drugs currently used in the clinic is likely to suffer from the emergence of resistant parasites. A global effort to identify lead compounds led to several initiatives such as the Medicine for Malaria Ventures (MMV), a repository of compounds showing promising efficacy in killing the parasite in cell-based assays. Here, we used mass spectrometry coupled with cellular thermal shift assay to identify putative protein targets of MMV000848, a compound with an in vitro EC50 of 0.5 µM against the parasite. Thermal shift assays showed a strong increase of P. falciparum purine nucleoside phosphorylase (PfPNP) melting temperature by up to 15 °C upon incubation with MMV000848. Binding and enzymatic assays returned a KD of 1.52 ± 0.495 µM and an IC50 value of 21.5 ± 2.36 µM. The inhibition is competitive with respect to the substrate, as confirmed by a cocrystal structure of PfPNP bound with MMV000848 at the active site, determined at 1.85 Å resolution. In contrast to transition states inhibitors, MMV000848 specifically inhibits the parasite enzyme but not the human ortholog. An isobologram analysis shows subadditivity with immucillin H and with quinine respectively, suggesting overlapping modes of action between these compounds. These results point to PfPNP as a promising antimalarial target and suggest avenues to improve inhibitor potency.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Purina-Nucleósido Fosforilasa , Antimaláricos/química , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Purina-Nucleósido Fosforilasa/química , Quinina/química , Espectrometría de Masas , Unión Proteica
9.
Acta Parasitol ; 68(4): 807-819, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37821729

RESUMEN

PURPOSE: Major human parasitic protozoans, such as Plasmodium falciparum and Trypanosoma brucei, cause malaria and trypanosomiasis also known as sleeping sickness. In anti-parasitic drug discovery research, trypanothione reductase (TryR) and P. falciparum dihydroorotate dehydrogenase (Pf-DHODH) enzymes are key drug targets in T. brucei and P. falciparum, respectively. The possibility of co-infection of single host by T. brucei and P. falciparum is because both parasites exist in sub-Saharan Africa and the problem of parasite drug resistance necessitates the discovery of new scaffolds, which are strange to the organisms causing these infectious diseases-new scaffolds may help overcome established resistance mechanisms of the organisms. METHOD: In this study, N,N'-bis[2-(5-bromo-7-azabenzimidazol-1-yl)-2-oxoethyl]ethylene-1,3-diamine and its cyclohexyl-1,2-diamine analogue were explored for their inhibitory potential against TryR and Pf-DHODH by engaging density functional study, molecular dynamic simulations, drug-likeness, in silico and in vitro studies RESULTS/CONCLUSION: Results obtained indicated excellent binding potential of the ligands to the receptors and good ADMET (adsorption, desorption, metabolism, excretion, and toxicity) properties.


Asunto(s)
Inhibidores Enzimáticos , Plasmodium falciparum , Trypanosoma , Dihidroorotato Deshidrogenasa , Inhibidores Enzimáticos/farmacología , Etilenos , Plasmodium falciparum/efectos de los fármacos , Trypanosoma/efectos de los fármacos
11.
N Engl J Med ; 389(13): 1191-1202, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37754284

RESUMEN

BACKGROUND: Although the clinical efficacy of antimalarial artemisinin-based combination therapies in Africa remains high, the recent emergence of partial resistance to artemisinin in Plasmodium falciparum on the continent is troubling, given the lack of alternative treatments. METHODS: In this study, we used data from drug-efficacy studies conducted between 2016 and 2019 that evaluated 3-day courses of artemisinin-based combination therapy (artesunate-amodiaquine or artemether-lumefantrine) for uncomplicated malaria in Eritrea to estimate the percentage of patients with day-3 positivity (i.e., persistent P. falciparum parasitemia 3 days after the initiation of therapy). We also assayed parasites for mutations in Pfkelch13 as predictive markers of partial resistance to artemisinin and screened for deletions in hrp2 and hrp3 that result in variable performance of histidine rich protein 2 (HRP2)-based rapid diagnostic tests for malaria. RESULTS: We noted an increase in the percentage of patients with day-3 positivity from 0.4% (1 of 273) in 2016 to 1.9% (4 of 209) in 2017 and 4.2% (15 of 359) in 2019. An increase was also noted in the prevalence of the Pfkelch13 R622I mutation, which was detected in 109 of 818 isolates before treatment, from 8.6% (24 of 278) in 2016 to 21.0% (69 of 329) in 2019. The odds of day-3 positivity increased by a factor of 6.2 (95% confidence interval, 2.5 to 15.5) among the patients with Pfkelch13 622I variant parasites. Partial resistance to artemisinin, as defined by the World Health Organization, was observed in Eritrea. More than 5% of the patients younger than 15 years of age with day-3 positivity also had parasites that carried Pfkelch13 R622I. In vitro, the R622I mutation conferred a low level of resistance to artemisinin when edited into NF54 and Dd2 parasite lines. Deletions in both hrp2 and hrp3 were identified in 16.9% of the parasites that carried the Pfkelch13 R622I mutation, which made them potentially undetectable by HRP2-based rapid diagnostic tests. CONCLUSIONS: The emergence and spread of P. falciparum lineages with both Pfkelch13-mediated partial resistance to artemisinin and deletions in hrp2 and hrp3 in Eritrea threaten to compromise regional malaria control and elimination campaigns. (Funded by the Bill and Melinda Gates Foundation and others; Australian New Zealand Clinical Trials Registry numbers, ACTRN12618001223224, ACTRN12618000353291, and ACTRN12619000859189.).


Asunto(s)
Antimaláricos , Combinación Arteméter y Lumefantrina , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Humanos , Amodiaquina/administración & dosificación , Amodiaquina/farmacología , Amodiaquina/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/farmacología , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas/administración & dosificación , Artemisininas/farmacología , Artemisininas/uso terapéutico , Resistencia a Medicamentos/genética , Eritrea/epidemiología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Prevalencia
12.
Malar J ; 22(1): 71, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36859238

RESUMEN

BACKGROUND: Malaria is a major public health issue with substantial risks among vulnerable populations. Currently, the World Health Organization (WHO) recommends SP-IPTp in the second and third trimesters. However, the efficacy of SP-IPTp is threatened by the emergence of sulfadoxine-pyrimethamine resistant malaria parasites due to single nucleotide polymorphisms in the Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthetase genes. This study aimed to assess the current prevalence of Pfdhfr/Pfdhps mutations in P. falciparum isolates collected from individuals residing in Ile-Ife, Nigeria, and also present maps of the prevalence of Pfdhps 431V and 581G within Nigeria and surrounding countries. METHODS: Between October 2020 and April 2021, samples were collected as dried blood spots among 188 participants who showed malaria positivity with a histidine-rich-protein-based rapid diagnostic test (RDT). Nested PCR assays were used to confirm falciparum in the samples with RDT positivity, and to amplify fragments of the Pfdhfr/Pfdhps genes followed by targeted amplicon sequencing. Published data since 2007 on the prevalence of the Pfdhps genotypes in Nigeria and the neighbouring countries were used to produce maps to show the distribution of the mutant genotypes. RESULTS: Only 74 and 61 samples were successfully amplified for the Pfdhfr and Pfdhps genes, respectively. At codons resulting in N51I, C59R, and S108N, Pfdhfr carried mutant alleles of 97.3% (72/74), 97.3% (72/74) and 98.6% (73/74), respectively. The Pfdhps gene carried mutations at codons resulting in amino acid changes at 431-436-437-540-581-613; I431V [45.9%, (28/61)], A581G [31.1% (19/61)] and A613S [49.2% (30/61)]. Constructed haplotypes were mainly the triple Pfdhfr mutant 51I-59R-108N (95.9%), and the most common haplotypes observed for the Pfdhps gene were the ISGKAA (32.8%), ISGKGS (8.2%), VAGKAA (14.8%), VAGKAS (9.8%) and VAGKGS (14.8%). In the context of the previously published data, a high prevalence of 431V/581G mutations was found in the study population. It seems quite evident that the Pfdhps 431V, 581G and 613S often co-occur as Pfdhps-VAGKGS haplotype. CONCLUSION: This study showed that the prevalence of VAGKGS haplotype seems to be increasing in prevalence. If this is similar in effect to the emergence of 581G in East Africa, the efficacy of SP-IPTp in the presence of these novel Pfdhps mutants should be re-assessed.


Asunto(s)
Dihidropteroato Sintasa , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Humanos , Dihidropteroato Sintasa/genética , Malaria Falciparum/parasitología , Nigeria , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Prevalencia , Resistencia a Medicamentos/genética
13.
Mar Drugs ; 21(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36827135

RESUMEN

Metallocarboxypeptidases are zinc-dependent peptide-hydrolysing enzymes involved in several important physiological and pathological processes. They have been a target of growing interest in the search for natural or synthetic compound binders with biomedical and drug discovery purposes, i.e., with potential as antimicrobials or antiparasitics. Given that marine resources are an extraordinary source of bioactive molecules, we screened marine invertebrates for new inhibitory compounds with such capabilities. In this work, we report the isolation and molecular and functional characterization of NpCI, a novel strong metallocarboxypeptidase inhibitor from the marine snail Nerita peloronta. NpCI was purified until homogeneity using a combination of affinity chromatography and RP-HPLC. It appeared as a 5921.557 Da protein with 53 residues and six disulphide-linked cysteines, displaying a high sequence similarity with NvCI, a carboxypeptidase inhibitor isolated from Nerita versicolor, a mollusc of the same genus. The purified inhibitor was determined to be a slow- and tight-binding inhibitor of bovine CPA (Ki = 1.1·× 10-8 mol/L) and porcine CPB (Ki = 8.15·× 10-8 mol/L) and was not able to inhibit proteases from other mechanistic classes. Importantly, this inhibitor showed antiplasmodial activity against Plasmodium falciparum in an in vitro culture (IC50 = 5.5 µmol/L), reducing parasitaemia mainly by inhibiting the later stages of the parasite's intraerythrocytic cycle whilst having no cytotoxic effects on human fibroblasts. Interestingly, initial attempts with other related proteinaceous carboxypeptidase inhibitors also displayed similar antiplasmodial effects. Coincidentally, in recent years, a metallocarboxypeptidase named PfNna1, which is expressed in the schizont phase during the late intraerythrocytic stage of the parasite's life cycle, has been described. Given that NpCI showed a specific parasiticidal effect on P. falciparum, eliciting pyknotic/dead parasites, our results suggest that this and related inhibitors could be promising starting agents or lead compounds for antimalarial drug discovery strategies.


Asunto(s)
Antimaláricos , Carboxipeptidasas , Plasmodium falciparum , Animales , Bovinos , Humanos , Antimaláricos/farmacología , Carboxipeptidasas/antagonistas & inhibidores , Plasmodium falciparum/efectos de los fármacos , Proteínas/farmacología , Caracoles/química , Porcinos
14.
Antimicrob Agents Chemother ; 67(2): e0082122, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36625569

RESUMEN

Protein ubiquitination is an important posttranslational regulation mechanism that mediates Plasmodium development and modifies parasite responses to antimalarial drugs. Although mutations in several parasite ubiquitination enzymes have been linked to increased drug tolerance, the molecular mechanisms by which ubiquitination pathways mediate these parasite responses remain largely unknown. Here, we investigate the roles of a Plasmodium falciparum ring finger ubiquitin ligase (PfRFUL) in parasite development and in responses to antimalarial drugs. We engineered a transgenic parasite having the Pfrful gene tagged with an HA-2A-NeoR-glmS sequence to knockdown (KD) Pfrful expression using glucosamine (GlcN). A Western blot analysis of the proteins from GlcN-treated pSLI-HA-NeoR-glmS-tagged (PfRFULg) parasites, relative to their wild-type (Dd2) controls, showed changes in the ubiquitination of numerous proteins. PfRFUL KD rendered the parasites more sensitive to multiple antimalarial drugs, including mefloquine, piperaquine, amodiaquine, and dihydroartemisinin. PfRFUL KD also decreased the protein level of the P. falciparum multiple drug resistance 1 protein (PfMDR1) and altered the ratio of two bands of the P. falciparum chloroquine resistance transporter (PfCRT), suggesting contributions to the changed drug responses by the altered ubiquitination of these two molecules. The inhibition of proteasomal protein degradation by epoxomicin increased the PfRFUL level, suggesting the degradation of PfRFUL by the proteasome pathways, whereas the inhibition of E3 ubiquitin ligase activities by JNJ26854165 reduced the PfRFUL level. This study reveals the potential mechanisms of PfRFUL in modifying the expression of drug transporters and their roles in parasite drug responses. PfRFUL could be a potential target for antimalarial drug development.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Proteínas Protozoarias , Ubiquitina-Proteína Ligasas , Humanos , Antimaláricos/farmacología , Cloroquina/farmacología , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Proteínas de Transporte de Membrana/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
Sci Rep ; 13(1): 399, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624300

RESUMEN

Artemisinin combination therapies (ACTs) have led to a significant decrease in Plasmodium falciparum malaria mortality. This progress is now threatened by emerging artemisinin resistance (ART-R) linked originally in SE Asia to polymorphisms in the Kelch propeller protein (K13) and more recently to several other seemingly unrelated genetic mutations. To better understand the parasite response to ART, we are characterizing a P. falciparum mutant with altered sensitivity to ART that was created via piggyBac transposon mutagenesis. The transposon inserted near the putative transcription start site of a gene defined as a "Plasmodium-conserved gene of unknown function," now functionally linked to K13 as the Kelch13 Interacting Candidate 5 protein (KIC5). Phenotype analysis of the KIC5 mutant during intraerythrocytic asexual development identified transcriptional changes associated with DNA stress response and altered mitochondrial metabolism, linking dysregulation of the KIC5 gene to the parasite's ability to respond to ART exposure. Through characterization of the KIC5 transcriptome, we hypothesize that this gene may be essential under ART exposure to manage gene expression of the wild-type stress response at early ring stage, thereby providing a better understanding of the parasite's processes that can alter ART sensitivity.


Asunto(s)
Antimaláricos , Artemisininas , Plasmodium falciparum , Antimaláricos/farmacología , Artemisininas/uso terapéutico , Resistencia a Medicamentos/genética , Mutación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
16.
PLoS Pathog ; 19(1): e1011118, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36696458

RESUMEN

Resistance of the human malaria parasites, Plasmodium falciparum, to artemisinins is now fully established in Southeast Asia and is gradually emerging in Sub-Saharan Africa. Although nonsynonymous SNPs in the pfk13 Kelch-repeat propeller (KREP) domain are clearly associated with artemisinin resistance, their functional relevance requires cooperation with other genetic factors/alterations of the P. falciparum genome, collectively referred to as genetic background. Here we provide experimental evidence that P. falciparum cyclophilin 19B (PfCYP19B) may represent one putative factor in this genetic background, contributing to artemisinin resistance via its increased expression. We show that overexpression of PfCYP19B in vitro drives limited but significant resistance to not only artemisinin but also piperaquine, an important partner drug in artemisinin-based combination therapies. We showed that PfCYP19B acts as a negative regulator of the integrated stress response (ISR) pathway by modulating levels of phosphorylated eIF2α (eIF2α-P). Curiously, artemisinin and piperaquine affect eIF2α-P in an inverse direction that in both cases can be modulated by PfCYP19B towards resistance. Here we also provide evidence that the upregulation of PfCYP19B in the drug-resistant parasites appears to be maintained by a short tandem repeat (SRT) sequence polymorphism in the gene's promoter region. These results support a model that artemisinin (and other drugs) resistance mechanisms are complex genetic traits being contributed to by altered expression of multiple genes driven by genetic polymorphism at their promoter regions.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Humanos , Antimaláricos/farmacología , Ciclofilinas/genética , Ciclofilinas/metabolismo , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Repeticiones de Microsatélite , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Regulación hacia Arriba
17.
Adv Healthc Mater ; 12(9): e2202411, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36515128

RESUMEN

The emergence of resistance to conventional antimalarial treatments remains a major cause for concern. New drugs that target the distinct development stages of Plasmodium parasites are required to address this risk. Herein, water-soluble aggregation-induced emission active cyclometalated iridium(III) polypyridyl complexes (Ir1-Ir12) are developed for the elimination of malaria parasites. Remarkably, these complexes show potent antimalarial activity in low nanomolar range against 3D7 (chloroquine and artemisinin sensitive strain), RKL9 (chloroquine resistant strain), and R539T (artemisinin resistant strains) strains of Plasmodium falciparum with faster killing rate of malaria parasites. Concomitantly, these complexes exhibit efficient in vivo antimalarial activity against both the asexual and gametocyte stages of Plasmodium berghei malaria parasite, suggesting promising transmission-blocking potential. The complexes tend to localize into mitochondria of P. falciparum determined by image and cell-based assay. The mechanistic studies reveal that these complexes exert their antimalarial activity by increasing reactive oxygen species levels and disrupting its mitochondrial membrane potential. Furthermore, the mitochondrial-dependent antimalarial activity of these complexes is confirmed in yeast model. Thus, this study for the first time highlights the potential role of targeting P. falciparum mitochondria by iridium complexes in discovering and developing the next-generation antimalarial agents for treating multidrug resistant malaria parasites.


Asunto(s)
Iridio , Malaria Falciparum , Mitocondrias , Plasmodium falciparum , Humanos , Antimaláricos/farmacología , Artemisininas/farmacología , Cloroquina/farmacología , Resistencia a Múltiples Medicamentos , Iridio/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Mitocondrias/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos
18.
Malar J ; 21(1): 394, 2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566182

RESUMEN

BACKGROUND: Despite significant progress in eliminating malaria from the state of Odisha, India, the disease is still considered endemic. Artesunate plus sulfadoxine-pyrimethamine (AS + SP) has been introduced since 2010 as first-line treatment for uncomplicated Plasmodium falciparum malaria. This study aimed to investigate the prevalence of mutations associated with resistance to chloroquine (CQ), sulfadoxine-pyrimethamine (SP), and artesunate (ART) in P. falciparum parasites circulating in the state. METHODS: A total of 239 isolates of P. falciparum mono infection were collected during July 2018-November 2020 from the four different geographical regions of the state. Genomic DNA was extracted from 200 µL of venous blood and amplified using nested polymerase chain reaction. Mutations on gene associated with CQ (Pfcrt and Pfmdr1) were assessed by PCR amplification and restriction fragment length polymorphism, artemisinin (Pfk13) gene by DNA sequencing and SP (Pfdhfr and Pfdhps) genes by allele-specific polymerase chain reaction (AsPCR). RESULTS: The point mutation in Pfcrt (K76T) was detected 2.1%, in Pfmdr1 (N86Y) 3.4%, and no mutations were found in Pfkelch13 propeller domain. Prevalence of Pfdhfr, Pfdhps and Pfhdfr-Pfdhps (two locus) gene mutations were 50.43%, 47.05% and 49.79% respectively. The single, double, triple and quadruple point mutations in Pfdhfr gene was 11.2%, 8.2%, 17.2% and 3.4% while, in Pfdhps gene was 10.9%,19.5%, 9.5% and 2.7% respectively. Of the total 13 haplotypes found in Pfdhfr, 8 were detected for the first time in the state and of the total 26 haplotypes found in Pfdhps, 7 were detected for the fisrt time in the state. The linked quintuple mutation Pfdhfr (N51I-C59R-S108N)-Pfdhps (A437G-K540E) responsible for clinical failure (RIII level of resistance) of SP resistance and A16V-S108T mutation in Pfdhfr responsible for cycloguanil was absent. CONCLUSION: The study has demonstrated a low prevalence of CQ resistance alleles in the study area. Despite the absence of the Pfkelch13 mutations, high prevalence of Pfdhfr and Pfdhps point mutations undermine the efficacy of SP partner drug, thereby threatening the P. falciparum malaria treatment policy. Therefore, continuous molecular and in vivo monitoring of ACT efficacy is warranted in Odisha.


Asunto(s)
Antimaláricos , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Artesunato/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico , Combinación de Medicamentos , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Proteínas Protozoarias/uso terapéutico , Pirimetamina/farmacología , Pirimetamina/uso terapéutico , Sulfadoxina/farmacología , Sulfadoxina/uso terapéutico , India/epidemiología
19.
Microbiol Spectr ; 10(6): e0253522, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36445076

RESUMEN

Since single nucleotide polymorphisms (SNPs) have attracted attention, there have been many explorations and improvements in screening and detection methods for SNPs. Traditional methods are complex and time-consuming and rely on expensive instruments. Therefore, there is an urgent need for a low-cost, simple, and accurate method that is convenient for use in resource-poor areas. Thus, a platform based on allele-specific PCR (AS-PCR) and a gold nanoparticle-based lateral flow assay (LFA) was developed, optimized, and used to detect the SNPs of the drug resistance gene pfmdr1. Subsequently, the system was assessed on clinical isolates and compared with nested PCR followed by Sanger sequencing. The sensitivity and specificity of the AS-PCR-LFA platform were up to 99.43% and 100%, respectively, based on the clinical isolates. The limit of detection is approximately 150 fg/µL for plasmid DNA as the template and 50 parasites/µL for dried filter blood spots from clinical isolates. The established and optimized AS-PCR-LFA system is more adaptable and rapidly translated to SNP analysis of other drug resistance genes and genetic diseases. In addition, while actively responding to the point-of-care testing policy, it also contributes to the Global Malaria Eradication Program. IMPORTANCE Rapid detection of single nucleotide polymorphisms (SNPs) is essential for malaria treatment. Based on the techniques of allele-specific PCR (AS-PCR) and lateral flow assay (LFA), an accurate and powerful platform for SNP detection of pfmdr1 was developed and evaluated with plasmid and clinical isolates. It offers a useful tool to identify antimalarial drug resistance and can support the effort to eliminate malaria globally.


Asunto(s)
Antimaláricos , Nanopartículas del Metal , Plasmodium falciparum , Alelos , Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Oro/uso terapéutico , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Mutación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/genética
20.
J Nat Prod ; 85(11): 2641-2649, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36282784

RESUMEN

Two new antiplasmodial peptides, named koshidacins A (1) and B (2), were discovered from the culture broth of the Okinawan fungus Pochonia boninensis FKR-0564. Their structures, including absolute configurations, were elucidated by a combination of spectroscopic methods and chemical derivatization. Both compounds showed moderate in vitro antiplasmodial activity against Plasmodium falciparum strains, with IC50 values ranging from 17.1 to 0.83 µM. In addition, compound 2 suppressed 41% of malaria parasites in vivo when administered intraperitoneally at a dose of 30 mg/kg/day for 4 days.


Asunto(s)
Antimaláricos , Hypocreales , Péptidos Cíclicos , Plasmodium falciparum , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Antimaláricos/farmacología , Hypocreales/química , Plasmodium falciparum/efectos de los fármacos , Péptidos Cíclicos/química , Péptidos Cíclicos/aislamiento & purificación , Péptidos Cíclicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...